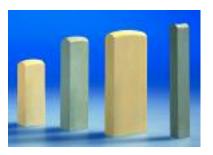


Diamond and CBN grinding wheels for the perfect finish

The proven product range with maximum tool life

A wide selection for the perfect finish

The use of high performance abrasives has become an important factor regarding both the function and economic viability of production in most areas of industry. The progress in tool development relates directly to the continuous optimisation of the quality of abrasive products; Atlantik GmbH has In order to satisfy the requirements, sold such products throughout the world for over 80 years under the trade name **ATLANTIC**.

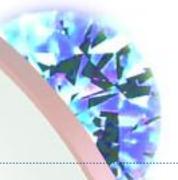

Atlantik GmbH is your competent partner for the service and customer orientated production of bonded abrasives in all types of grain (aluminium oxide, silicon carbide, sintered aluminium oxide, diamond and cubic boron nitride) in both resin and vitrified bonds. More possibilities from A - Z with millions of permutations

ATLANTIC abrasive products are used in the automobile, steel and bearing industries as also indeed within their supply chain. **ATLANTIC** abrasive products achieve high stock removal rates and good surface finish.

Today, the company produces approx. 40000 different products from which numerous variations are also possible. Competence to the core

The various application requirements can seldom be fulfilled with a universal specification. The quality is specifically tailored to the application.

- Grinding wheels and segments
- **Diamond and CBN wheels**
- Honing and superfinishing stones



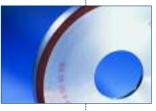
Contents

Wheel shapes – coding system	4
Standard product range	5
Diamond and CBN grit types and sizes	6/7
Hardness and structure	8
Bonding selection	9

<u>creative & dynamic</u>

Ideal for high production volumes

Crystalline cubic boron nitride

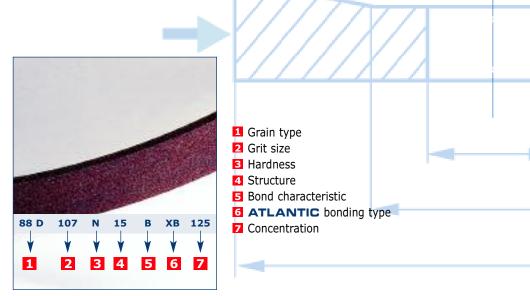

Due to their outstanding wheel life and resistance to wear, diamond and CBN grinding wheels have successfully replaced many machining and stock removal techniques using conventional grit type wheels. They are particularly cost effective in high volume production.

Diamond wheels

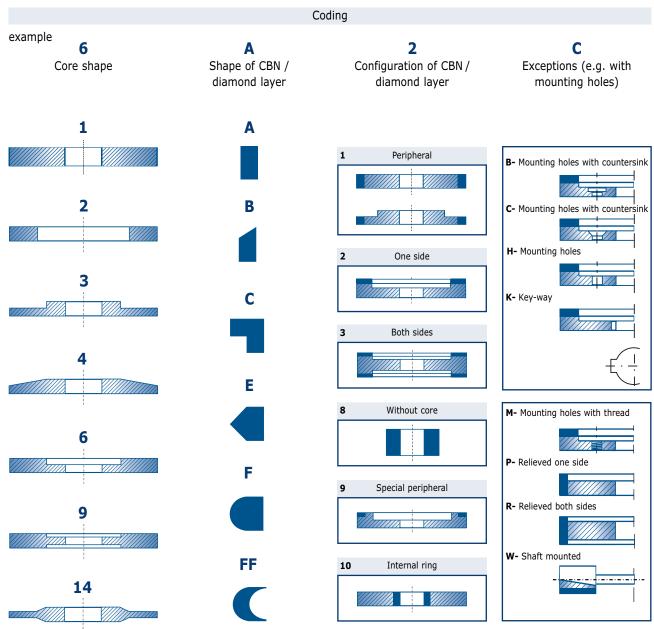
They are particularly cost effective for grinding brittle and short-chip materials e.g. ceramic, glass, tungsten carbide, titanium, alloyed steel, graphite, magnetic sintered and composite materials.

Diamond is the hardest grinding media known to-date (Knoops hardness 8,000) and like cubic boron nitride, is synthetically manufactured. Diamond can even be used for machining plastic and for some special applications e.g. honing of steel and grey cast iron. CBN does not have quite the same hardness characteristic as diamond; however, the disintegration temperature is greater than 1,500 °C and is produced by a combination of high pressure and high temperature.

CBN (Knoops hardness 4,700) is considerably harder than alumina and silicon carbide; due to its low wear rate, it produces the required profile and geometric tolerances in most instances. Maximum cost effectiveness of CBN is achieved when grinding hardened high alloyed, difficult to grind steels over 60 HRC e.g. tool or chrome steel. Contrary to diamond, CBN is suitable for grinding carbide forming materials.



Concentration, conditioning, dressing	10
Conditioning, profiling, sharpening	10/11
Recommended specifications	12/13/14
Coolant	15
Cutting speed – traverse speed	15


Wheel shapes – coding systems

Customer orientated quality without compromise

A letter – numeral coding system is used to specify the **ATLANTIC** products. By using a complete combination of quality control methods, maintaining the precise quality is guaranteed. The documentation of this data ensures traceability and the ability to reproduce the identical **ATLANTIC** product.

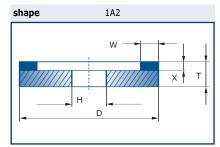
Coding system

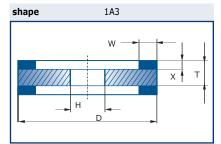
Standard product range

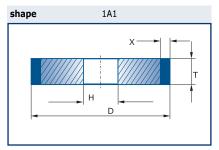
Save costs with greater depth of layer (X)

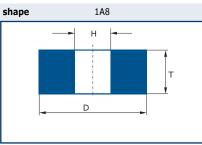
The greater the depth, the more cost effective; this means longer tool life and less downtime. The additional vol-

ume of grain results in only a marginal increase in manufacturing cost i.e. double the depth does not automati-

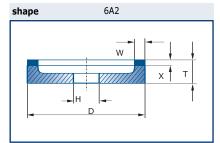

cally mean twice the price; the wheel life can however be doubled if used correctly.

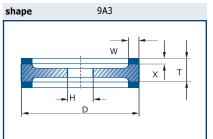

Explanation of symbols (extract from EN 13236)

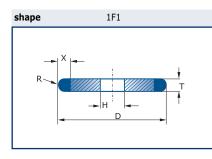

Outer diameter


- E ⇒ Back wall of cup and recessed wheel
- H ↔ Internal diameter
- J
 ⇒
 Diameter of wheel boss

 L
 ⇒
 Shaft length for mounter
 - \Rightarrow Shaft length for mounted points / length of honing stones
- **R** ⇒ Radius
- $\mathbf{S}_{\mathbf{d}}$ \Rightarrow Shaft diameter for mounted points
- T ⇔ Overall width W ⇔ Width of lave
 - ➡ Width of layer (also wheel width per EN 13236)
- X ↔ Depth of layer

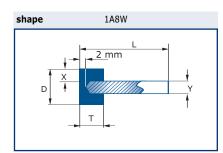



14A1


shape

shape

Х



Ideal: a small contact area

The contact area between the workpiece and the diamond/CBN layer should be kept as small as possible.

Advantages: of a small contact area

- + wheel cuts more freely (higher traverse speeds possible)
- + wheel grinds cooler
- + better geometry on flat surfaces
- + better removal of swarf through
- better coolant effect
- + reduced tool costs

HHA

Advantages: of a larger contact area

- + better surface finish
- + better wheel life

Grain types

CBN grain types

Туре	Application	Bonding	Available grit sizes
N1B	Universal application - tool steel >58 HRC, HSS, stainless, alloyed steels – grain is not coated	v	252 - 46
M1B	Finishing operations – roller bearing steels, tool steels, high alloys and stainless with $>$ 58 HRC	v	35 - 3
40B	As in N1B but longer tool life	v	252 - 46
N2B	As in N1B but with resin bond only	В	252 - 46
M2B	As in M1B but with resin bond only	В	30 - 15
42B	As in N2B but with considerably longer tool life	В	252 - 46
50B	Precision grinding of hardened and soft iron alloys and cast iron	v	252 - 46
51B	Titanium coated workpieces	V	252 - 46
52B	For extremely tough wear resistant tool steels and carbon sintered steels	В	252 - 76
55B	Precision grinding for hard / soft iron alloys - require grain with good thermal conductivity	V	602 - 91
56B	As 55B with resin bond only	В	602 - 181

Diamond grain types

Туре	Application	Bonding	Available grit sizes
VGD	Not coated - irregular shape - bonds well - very friable - keeps sharp. Recommended for wet grinding of tungsten carbide, PCD, glass and ceramics	B V	301 - 76
VMD	Fine grit version of VGD	B V	30 - 3
BMD	Fine grit similar to VMD, greater physical hardness - less friable - square shaped - particularly suitable for grinding PCD and PCB	B V	30 - 3
56D	Identical to VGD but coated to give longer tool life with the same fri- ability	В	301 - 46
MND	Fine grit version of 56D	В	30 - 15
GDD	Good thermal conductivity – coated for dry grinding – bonds well	В	151 - 46
88D	Particularly cost-effective for wet grinding of short-chip materials e.g. tungsten carbide	В	252 - 46
CSD	Special grain type for grinding ${\it carbide}\ /\ {\it steel}\ combination$ with a steel content of less than 30 $\%$	В	252 - 46

Diamond and CBN grit sizes

CBN and diamond for cost effective stock removal

In order to achieve a satisfactory stock removal rate and wheel infeed, it is essential to maintain a certain height of grit standing proud of the bond; this

should lie between 20-30 % of the average grit diameter. If an infeed rate is excessive, the grain particles will be prematurely discarded from the bond. Basically, by using a coarser grit size (dependent upon the surface finish), the stock can be removed more economically.

Achievable surface finishes

Average values (alteration necessary in certain cases)

Surface	e finish	CBN - common grit sizes		Diamond - com	nmon grit sizes
R _a [µm]	Rt [µm]	Surface cylindrical		Surface	cylindrical
0.5	2.1 - 4.0	126 - 151	64 - 76	151 - 181	107 - 151
0.4	1.7 - 3.5	91 - 107	54 - 64	126 - 151	107 - 126
0.3	1.3 - 2.5	64 - 76	46 - 54	107	76 - 91
0.2	0.9 - 1.8	54	46	91	54 - 64
0.1	0.5 - 1.2	25 - 46		64	46

Diamond and CBN grit sizes

Fepa - S	tandard	Nominal mesh size US - Mesh ANSI - B74.16.71	Indard Nominal mesh size ANSI - B74.16.71		UK - Standard ASTM - E -11-70
narrow	wide	μm	narrow	wide	narrow
1181 1001	1182	1180 / 1000 1000 / 850	16 / 18	16/ 20	18 / 20
851 711	852	850 / 710 710 / 600	20 / 25	20/ 30	25 / 30
601 501	602	600 / 500 500 / 425	30 / 35	30/ 40	35 / 40
426 356	427	425 / 355 355 / 300	40 / 45	40/ 50	45 / 50
301		300 / 250	50 / 60		50 / 60
Common grit sizes used					
251 213	252	250 / 212 212 / 180	60 / 70		70 / 80
181		180 / 150	80 / 100		80 / 100
151		150 / 125	100 / 120		100 / 120
126		125 / 106	120 / 140		120 / 140
107		106 / 90	140 / 170		140 / 170
91		90 / 5	170 / 200		170 / 200
76		75 / 63	200 / 230		200 / 230
64		63 / 53	230 / 270		230 / 270
54		53 / 45	270 / 325		270 / 325
46		45 / 38	325 / 400		325 / 400

Micro grits

Fepa	limits (µm)	ANSI
M63	42 / 64	45
M40	27 / 53	30
M25	16 / 34	15
M16	10 / 22	9
M10	6 / 14	

Fepa	limits (µm)
M6.3	4 / 9
M4.0	2.5 / 6.5
M2.5	1.5 / 3.5
M1.6	1 / 2.5
M1.0	0.5 / 1.5

Hardness – structure

Hardness identification

The hardness of a CBN or diamond grinding wheel is identified by a letter after the grit size. Superabrasives however, do not cover the total range found in conventional wheels i.e. very soft **A** to very hard **Z**.

The hardness of **resin** bonded superabrasives is defined as follows:

Vitrified bonded wheels lie mainly in the hardness range from **M** to maximum **R**.

softer, cooler cutting

Harder specifications for:

- Iong chip materials
- narrow width of diamond / CBN layer
- grinding where highly effective coolant / lubricant is used

Softer specifications for:

- short-chip materials
- wider layers of diamond / CBN
- dry grinding or low concentration soluble
- fine grit sizes

Advantages of open structure

Structure

Individual solutions for maximum economy

The structure of a grinding wheel is less heat generation at point of contact defined as the ratio between the volume of grain, bonding and pores. good absorbtion of coolant The greater the volume of grain less chance of 'loading' and / or bond means less space for the pores which in turn means a denser easy to condition/dress product. Disadvantages of open structure Vitrified bonds structure is denoted by a number from • higher wear rate 40 (open) to 50 (dense) poor profile holding capability Advantages of **dense** structure good profile holding capability **Resin bonds** better surface finish > 16 🔿 (very open / very soft) better stock removal • more cost effective due to longer wheel life 11-15 ⇒ (open / soft) Disadvantages of denser structure danger of loading 5-10 ⇒ (normal / medium hardness) danger of burning complicated conditioning / dressing process < 5 🗢 (dense / hard)

Vitrified bonds

Identification	Characteristic	Application
V YA V YA1 V YA2 V YC	friable flowing bond with high % glass	only for rough grinding (seldom used) good profile holding universal as VYA1 but for finer than B91 tougher than VYA1

Notes: • mainly used with CBN

- mainly used for wet grinding
- no limit on shelf life / resistant to high pH-value
- better profile holding capability in comparison to resin bond
- good for long-chip materials (higher porosity)
- can be conditioned/dressed with normal dressing tools

Resin bonds

Identification	Characteristic	Bond wear rate
B XA	very elastic and tough	higher
B XB	hard and friable	lower
B XC	elastic and cool cutting	higher
B XE	used for micro grits	lower

- **Notes:** universal application
 - wet or dry grinding
 - limited shelf life after contact with high pH-coolant
 - poor profile holding capability in comparison to metal or vitrified bond
- good for short-chip materials
- sometimes complicated dressing process required
- after conditioning, hand dressing is generally required to cut back the bond

Concentration – conditioning – dressing

The concentration is the weight in carats of diamond or CBN per cm ³	Concentration	ct / cm		
	of the layer. One carat equals 0.2 g. The base value of 100 concentration equates exactly to 4.4 carat/cm ³ .	25 50 75 100	1.1 2.2 3.3 4.4	
	Applications for low concentration (25-50)		Applications concentratio	

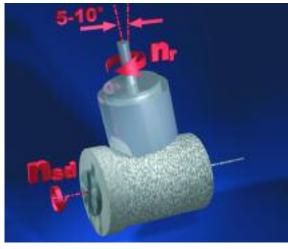
finish grinding / finishing
extremely wide layers

medium grit sizes
plain wheels for surface and
cylindrical grinding
bondings with medium hardness
wider layers

Concentration	ct / cm³
125	5.5
150	6.6
175	7.7
200	8.8

Applications for **high** concentration (125-200)

- internal grinding
 creep-feed and profile grinding
- (good profile holding)
- bondings with greater hardness
- narrow layers

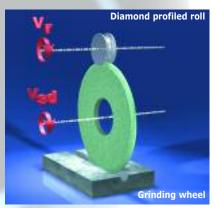

Coarse surface finish / coarse grit size

Dressing possibilities

Conditioning of diamond and CBN can be divided into dressing, profiling and sharpening. Dressing (mainly associated with vitrified bonded wheels) produces the required concentricity, flatness and geometric accuracy. In general, the same dressing tools are used as for conventional wheels e.g. blade type, multi-point / single point diamond or roller. The profile to be dressed and the machine capability determine whether a rotating or fixed dressing tool should be used. A rotating dressing tool is always preferable due to cost reasons. Maximising the time taken between dressing does not necessarily give the best result. By reducing the dressing infeed at shorter intervals, one can maintain a consistently good result in terms of holding geometric tolerances, taking greater care of the dressing tool and enhancing tool life.

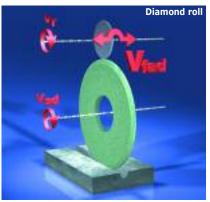
Examples of dressing with a rotary dressing tool

Dressing with rotary cup-wheel


Centrifugal brake dressing tool

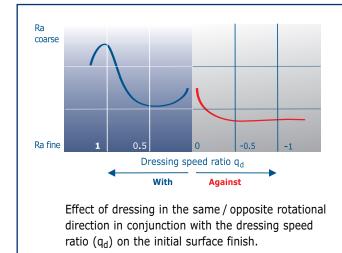
Conditioning – profiling – sharpening

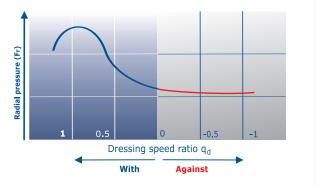
Profiling


A rotating diamond dresser is normally used to generate the required profile on the periphery of the grinding wheel. This is achieved by the dressing tool following the contour i.e. path controlled, or by using a pre-profiled diamond roll.

Pre-profiled rotary dresser

Influencing factors using a pre-profiled diamond roll


- Speed ratio $q_d = v_r / v_{sd}$
- Same/opposite rotational direction
- Dressing infeed per grinding wheel v_{fd}

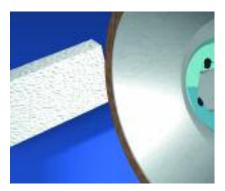


Path-controlled rotary dresser

Influencing factors using a path-controlled rotary dresser

- Speed ratio $q_d = v_r / v_{sd}$
- Same / opposite rotational direction
- Cross traverse per grinding wheel revolution f_d
- Infeed ad

Effect of dressing in the same / opposite rotational direction in conjunction with the dressing speed ratio (q_d) on the radial pressure (F_r)


Sharpening

Sharpening applies only when a layer becomes blunt and / or at the end of a normal dressing or profiling cycle. By exposing the grit, each grain particle stands proud of the bonding (20-30 % of the grit diameter).

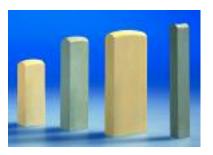
Sharpening results in the removal of loaded material or foreign particles and cuts back the bonding.

Sharpening after normal dressing or profiling is necessary when the bonding has not been sufficiently cut back to achieve the correct grain exposure.

Normally, an aluminium oxide sharpening / dressing stone is used.

A wide selection for the perfect finish

The use of high performance abrasives has become an important factor regarding both the function and economic viability of production in most areas of industry. The progress in tool development relates directly to the continuous optimisation of the quality of abrasive products; Atlantik GmbH has In order to satisfy the requirements, sold such products throughout the world for over 80 years under the trade name **ATLANTIC**.

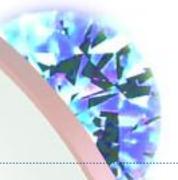

Atlantik GmbH is your competent partner for the service and customer orientated production of bonded abrasives in all types of grain (aluminium oxide, silicon carbide, sintered aluminium oxide, diamond and cubic boron nitride) in both resin and vitrified bonds. More possibilities from A - Z with millions of permutations

ATLANTIC abrasive products are used in the automobile, steel and bearing industries as also indeed within their supply chain. **ATLANTIC** abrasive products achieve high stock removal rates and good surface finish.

Today, the company produces approx. 40000 different products from which numerous variations are also possible. Competence to the core

The various application requirements can seldom be fulfilled with a universal specification. The quality is specifically tailored to the application.

- Grinding wheels and segments
- **Diamond and CBN wheels**
- Honing and superfinishing stones



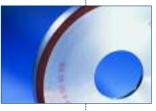
Contents

Wheel shapes – coding system	
Standard product range	5
Diamond and CBN grit types and sizes	6/7
Hardness and structure	8
Bonding selection	9

<u>creative & dynamic</u>

Ideal for high production volumes

Crystalline cubic boron nitride

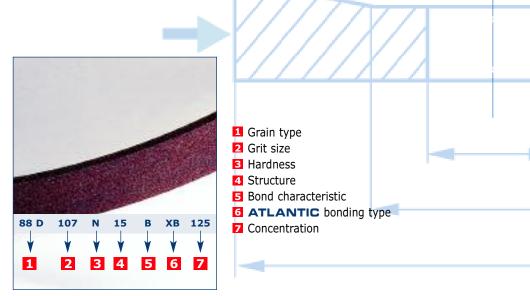

Due to their outstanding wheel life and resistance to wear, diamond and CBN grinding wheels have successfully replaced many machining and stock removal techniques using conventional grit type wheels. They are particularly cost effective in high volume production.

Diamond wheels

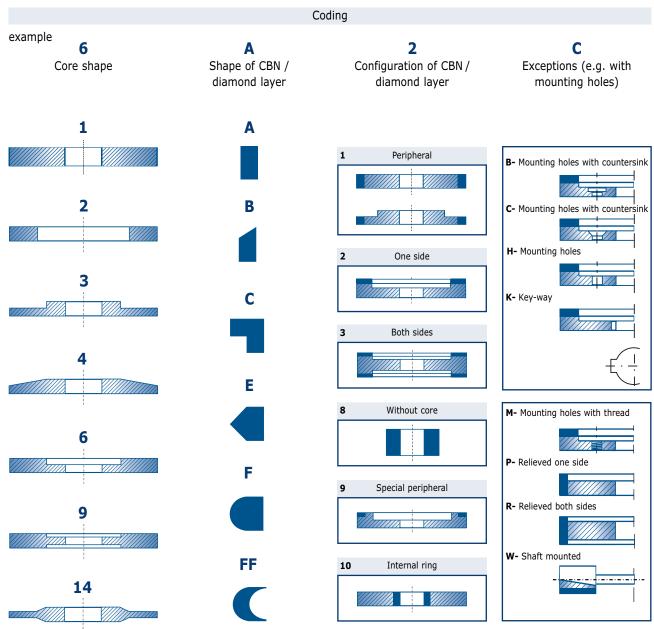
They are particularly cost effective for grinding brittle and short-chip materials e.g. ceramic, glass, tungsten carbide, titanium, alloyed steel, graphite, magnetic sintered and composite materials.

Diamond is the hardest grinding media known to-date (Knoops hardness 8,000) and like cubic boron nitride, is synthetically manufactured. Diamond can even be used for machining plastic and for some special applications e.g. honing of steel and grey cast iron. CBN does not have quite the same hardness characteristic as diamond; however, the disintegration temperature is greater than 1,500 °C and is produced by a combination of high pressure and high temperature.

CBN (Knoops hardness 4,700) is considerably harder than alumina and silicon carbide; due to its low wear rate, it produces the required profile and geometric tolerances in most instances. Maximum cost effectiveness of CBN is achieved when grinding hardened high alloyed, difficult to grind steels over 60 HRC e.g. tool or chrome steel. Contrary to diamond, CBN is suitable for grinding carbide forming materials.



Concentration, conditioning, dressing	10
Conditioning, profiling, sharpening	10/11
Recommended specifications	12/13/14
Coolant	15
Cutting speed – traverse speed	15


Wheel shapes – coding systems

Customer orientated quality without compromise

A letter – numeral coding system is used to specify the **ATLANTIC** products. By using a complete combination of quality control methods, maintaining the precise quality is guaranteed. The documentation of this data ensures traceability and the ability to reproduce the identical **ATLANTIC** product.

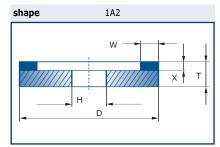
Coding system

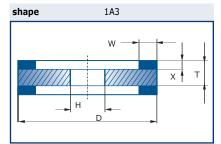
Standard product range

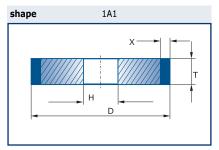
Save costs with greater depth of layer (X)

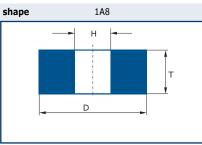
The greater the depth, the more cost effective; this means longer tool life and less downtime. The additional vol-

ume of grain results in only a marginal increase in manufacturing cost i.e. double the depth does not automati-

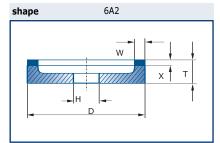

cally mean twice the price; the wheel life can however be doubled if used correctly.

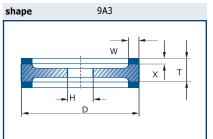

Explanation of symbols (extract from EN 13236)

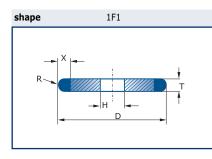

Outer diameter


- E ⇒ Back wall of cup and recessed wheel
- H ↔ Internal diameter
- J
 ⇒
 Diameter of wheel boss

 L
 ⇒
 Shaft length for mounter
 - \Rightarrow Shaft length for mounted points / length of honing stones
- **R** ⇒ Radius
- $\mathbf{S}_{\mathbf{d}}$ \Rightarrow Shaft diameter for mounted points
- T ⇔ Overall width W ⇔ Width of lave
 - ➡ Width of layer (also wheel width per EN 13236)
- X ↔ Depth of layer

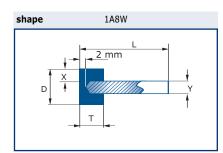



14A1


shape

shape

Х



Ideal: a small contact area

The contact area between the workpiece and the diamond/CBN layer should be kept as small as possible.

Advantages: of a small contact area

- + wheel cuts more freely (higher traverse speeds possible)
- + wheel grinds cooler
- + better geometry on flat surfaces
- + better removal of swarf through
- better coolant effect
- + reduced tool costs

HHA

Advantages: of a larger contact area

- + better surface finish
- + better wheel life

Grain types

CBN grain types

Туре	Application	Bonding	Available grit sizes
N1B	Universal application - tool steel >58 HRC, HSS, stainless, alloyed steels – grain is not coated	v	252 - 46
M1B	Finishing operations – roller bearing steels, tool steels, high alloys and stainless with $>$ 58 HRC	v	35 - 3
40B	As in N1B but longer tool life	v	252 - 46
N2B	As in N1B but with resin bond only	В	252 - 46
M2B	As in M1B but with resin bond only	В	30 - 15
42B	As in N2B but with considerably longer tool life	В	252 - 46
50B	Precision grinding of hardened and soft iron alloys and cast iron	v	252 - 46
51B	Titanium coated workpieces	V	252 - 46
52B	For extremely tough wear resistant tool steels and carbon sintered steels	В	252 - 76
55B	Precision grinding for hard / soft iron alloys - require grain with good thermal conductivity	V	602 - 91
56B	As 55B with resin bond only	В	602 - 181

Diamond grain types

Туре	Application	Bonding	Available grit sizes
VGD	Not coated - irregular shape - bonds well - very friable - keeps sharp. Recommended for wet grinding of tungsten carbide, PCD, glass and ceramics	B V	301 - 76
VMD	Fine grit version of VGD	B V	30 - 3
BMD	Fine grit similar to VMD, greater physical hardness - less friable - square shaped - particularly suitable for grinding PCD and PCB	B V	30 - 3
56D	Identical to VGD but coated to give longer tool life with the same fri- ability	В	301 - 46
MND	Fine grit version of 56D	В	30 - 15
GDD	Good thermal conductivity – coated for dry grinding – bonds well	В	151 - 46
88D	Particularly cost-effective for wet grinding of short-chip materials e.g. tungsten carbide	В	252 - 46
CSD	Special grain type for grinding ${\it carbide}\ /\ {\it steel}\ combination$ with a steel content of less than 30 $\%$	В	252 - 46

Diamond and CBN grit sizes

CBN and diamond for cost effective stock removal

In order to achieve a satisfactory stock removal rate and wheel infeed, it is essential to maintain a certain height of grit standing proud of the bond; this

should lie between 20-30 % of the average grit diameter. If an infeed rate is excessive, the grain particles will be prematurely discarded from the bond. Basically, by using a coarser grit size (dependent upon the surface finish), the stock can be removed more economically.

Achievable surface finishes

Average values (alteration necessary in certain cases)

Surface finish		CBN - common grit sizes		Diamond - common grit sizes	
R _a [µm]	Rt [µm]	Surface	cylindrical	Surface	cylindrical
0.5	2.1 - 4.0	126 - 151	64 - 76	151 - 181	107 - 151
0.4	1.7 - 3.5	91 - 107	54 - 64	126 - 151	107 - 126
0.3	1.3 - 2.5	64 - 76	46 - 54	107	76 - 91
0.2	0.9 - 1.8	54	46	91	54 - 64
0.1	0.5 - 1.2	25 - 46		64	46

Diamond and CBN grit sizes

Fepa - Standard		Nominal mesh size	US - Mesh ANSI - B74.16.71		UK - Standard ASTM - E -11-70
narrow	wide	μm	narrow	wide	narrow
1181 1001	1182	1180 / 1000 1000 / 850	16 / 18	16/ 20	18 / 20
851 711	852	850 / 710 710 / 600	20 / 25	20/ 30	25 / 30
601 501	602	600 / 500 500 / 425	30 / 35	30/ 40	35 / 40
426 356	427	425 / 355 355 / 300	40 / 45	40/ 50	45 / 50
301		300 / 250	50 / 60		50 / 60
Common grit sizes used					
251 213	252	250 / 212 212 / 180	60 / 70		70 / 80
181		180 / 150	80 / 100		80 / 100
151		150 / 125	100 / 120		100 / 120
126		125 / 106	120 / 140		120 / 140
107		106 / 90	140 / 170		140 / 170
91		90 / 5	170 / 200		170 / 200
76		75 / 63	200 / 230		200 / 230
64		63 / 53	230 / 270		230 / 270
54		53 / 45	270 / 325		270 / 325
46		45 / 38	325 / 400		325 / 400

Micro grits

Fepa	limits (µm)	ANSI
M63	42 / 64	45
M40	27 / 53	30
M25	16 / 34	15
M16	10 / 22	9
M10	6 / 14	

Fepa	limits (µm)
M6.3	4 / 9
M4.0	2.5 / 6.5
M2.5	1.5 / 3.5
M1.6	1 / 2.5
M1.0	0.5 / 1.5

Hardness – structure

Hardness identification

The hardness of a CBN or diamond grinding wheel is identified by a letter after the grit size. Superabrasives however, do not cover the total range found in conventional wheels i.e. very soft **A** to very hard **Z**.

The hardness of **resin** bonded superabrasives is defined as follows:

Vitrified bonded wheels lie mainly in the hardness range from **M** to maximum **R**.

softer, cooler cutting

Harder specifications for:

- Iong chip materials
- narrow width of diamond / CBN layer
- grinding where highly effective coolant / lubricant is used

Softer specifications for:

- short-chip materials
- wider layers of diamond / CBN
- dry grinding or low concentration soluble
- fine grit sizes

Advantages of open structure

Structure

Individual solutions for maximum economy

The structure of a grinding wheel is less heat generation at point of contact defined as the ratio between the volume of grain, bonding and pores. good absorbtion of coolant The greater the volume of grain less chance of 'loading' and / or bond means less space for the pores which in turn means a denser easy to condition/dress product. Disadvantages of open structure Vitrified bonds structure is denoted by a number from • higher wear rate 40 (open) to 50 (dense) poor profile holding capability Advantages of **dense** structure good profile holding capability **Resin bonds** better surface finish > 16 🔿 (very open / very soft) better stock removal • more cost effective due to longer wheel life 11-15 ⇒ (open / soft) Disadvantages of denser structure danger of loading 5-10 ⇒ (normal / medium hardness) danger of burning complicated conditioning / dressing process < 5 🗢 (dense / hard)

Vitrified bonds

Identification	Characteristic	Application
V YA V YA1 V YA2 V YC	friable flowing bond with high % glass	only for rough grinding (seldom used) good profile holding universal as VYA1 but for finer than B91 tougher than VYA1

Notes: • mainly used with CBN

- mainly used for wet grinding
- no limit on shelf life / resistant to high pH-value
- better profile holding capability in comparison to resin bond
- good for long-chip materials (higher porosity)
- can be conditioned/dressed with normal dressing tools

Resin bonds

Identification	Characteristic	Bond wear rate
B XA	very elastic and tough	higher
B XB	hard and friable	lower
B XC	elastic and cool cutting	higher
B XE	used for micro grits	lower

- **Notes:** universal application
 - wet or dry grinding
 - limited shelf life after contact with high pH-coolant
 - poor profile holding capability in comparison to metal or vitrified bond
- good for short-chip materials
- sometimes complicated dressing process required
- after conditioning, hand dressing is generally required to cut back the bond

Concentration – conditioning – dressing

	The concentration is the weight in carats of diamond or CBN per cm ³ of the layer. One carat equals 0.2 g. The base value of 100 concentration equates exactly to 4.4 carat/cm ³ .	Concentration	ct / cm	
		25 50 75 100	1.1 2.2 3.3 4.4	
	Applications for low concentration (25-50)		Applications concentratio	

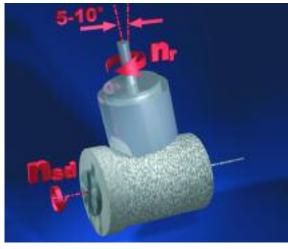
finish grinding / finishing
extremely wide layers

medium grit sizes
plain wheels for surface and
cylindrical grinding
bondings with medium hardness
wider layers

Concentration	ct / cm³
125	5.5
150	6.6
175	7.7
200	8.8

Applications for **high** concentration (125-200)

- internal grinding
 creep-feed and profile grinding
- (good profile holding)
- bondings with greater hardness
- narrow layers

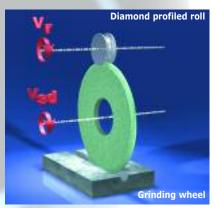

Coarse surface finish / coarse grit size

Dressing possibilities

Conditioning of diamond and CBN can be divided into dressing, profiling and sharpening. Dressing (mainly associated with vitrified bonded wheels) produces the required concentricity, flatness and geometric accuracy. In general, the same dressing tools are used as for conventional wheels e.g. blade type, multi-point / single point diamond or roller. The profile to be dressed and the machine capability determine whether a rotating or fixed dressing tool should be used. A rotating dressing tool is always preferable due to cost reasons. Maximising the time taken between dressing does not necessarily give the best result. By reducing the dressing infeed at shorter intervals, one can maintain a consistently good result in terms of holding geometric tolerances, taking greater care of the dressing tool and enhancing tool life.

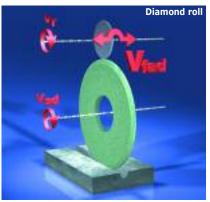
Examples of dressing with a rotary dressing tool

Dressing with rotary cup-wheel


Centrifugal brake dressing tool

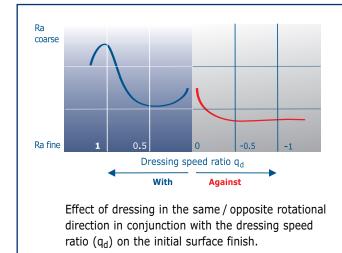
Conditioning – profiling – sharpening

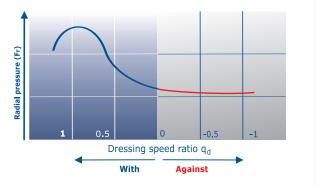
Profiling


A rotating diamond dresser is normally used to generate the required profile on the periphery of the grinding wheel. This is achieved by the dressing tool following the contour i.e. path controlled, or by using a pre-profiled diamond roll.

Pre-profiled rotary dresser

Influencing factors using a pre-profiled diamond roll


- Speed ratio $q_d = v_r / v_{sd}$
- Same/opposite rotational direction
- Dressing infeed per grinding wheel v_{fd}

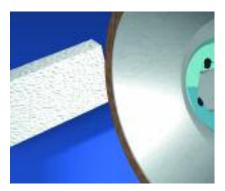


Path-controlled rotary dresser

Influencing factors using a path-controlled rotary dresser

- Speed ratio $q_d = v_r / v_{sd}$
- Same / opposite rotational direction
- Cross traverse per grinding wheel revolution f_d
- Infeed ad

Effect of dressing in the same / opposite rotational direction in conjunction with the dressing speed ratio (q_d) on the radial pressure (F_r)


Sharpening

Sharpening applies only when a layer becomes blunt and / or at the end of a normal dressing or profiling cycle. By exposing the grit, each grain particle stands proud of the bonding (20-30 % of the grit diameter).

Sharpening results in the removal of loaded material or foreign particles and cuts back the bonding.

Sharpening after normal dressing or profiling is necessary when the bonding has not been sufficiently cut back to achieve the correct grain exposure.

Normally, an aluminium oxide sharpening / dressing stone is used.

Recommend specifications - Internal grinding -

The following tables list successful applications using **ATLANTIC** diamond and CBN grinding wheels

Internal grinding			
Hardened steel	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	N2B 126-R08 B XA 75	N1B 126-P50 V YA1 200
	0.2 - 0.4	N2B 107-R08 B XA 75	N1B 107-P50 V YA1 150
	< 0.2	N2B 76-R05 B XA 50	N1B 76-Q50 V YA2 100
	≤ 0.1	N2B 46-R05 B XA 50	N1B 46-Q50 V YA2 75
Soft steel	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	42B 126-R05 B XA 75	50B 126-P50 V YA1 200
	0.2 - 0.4	42B 107-R05 B XA 75	50B 107-P50 V YA1 150
	< 0.2	42B 76-V03 B XA 50	50B 76-Q50 V YA2 100
	≤ 0.1	42B 46-V03 B XA 50	50B 46-Q50 V YA2 75
Super-refined alloyed steel	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	N2B 126-R08 B XA 75	N1B 126-P50 V YA1 200
	0.2 - 0.4	N2B 107-R08 B XA 75	N1B 107-P50 V YA1 150
	< 0.2	N2B 76-R05 B XA 50	N1B 76-Q50 V YA2 100
	≤ 0.1	N2B 46-R05 B XA 50	N1B 46-Q50 V YA2 75
Tool steel	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	52B 126-R08 B XA 75	40B 126-P50 V YA1 200
	0.2 - 0.4	52B 107-R08 B XA 75	40B 107-P50 V YA1 150
	≤ 0.2	52B 76-R05 B XA 50	40B 76-Q50 V YA2 100
	≤ 0.1	42B 46-R05 B XA 50	40B 46-Q50 V YA2 75
High alloyed steel	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	N2B 126-R05 B XA 75	N1B 126-P50 V YA1 200
	0.2 - 0.4	N2B 107-R05 B XA 75	N1B 107-P50 V YA1 150
	< 0.2	N2B 76-V03 B XA 50	N1B 76-Q50 V YA2 100
	≤ 0.1	N2B 46-V03 B XA 50	N1B 46-Q50 V YA2 75
Non-ferrous metals	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	N2B 126-R05 B XA 75	N1B 126-P50 V YA1 200
	0.2 - 0.4	N2B 107-R05 B XA 75	N1B 107-P50 V YA1 150
	< 0.2	N2B 76-V03 B XA 50	N1B 76-Q50 V YA2 100
	≤ 0.1	N2B 46-V03 B XA 50	N1B 46-Q50 V YA2 75
Tungsten carbide / ceramics	Surface finish in µm Ra	Tungsten carbide	Ceramics / glass
	> 0.4	88D 126-V00 B XB 150	VGD 126-V00 B XB 150
	0.2 0.4	89D 107 V00 B VB 150	VCD 107 V00 B VB 150

0.2 - 0.4 88D 107-V00 B XB 150

< 0.2

 ≤ 0.1

VGD 107-V00 B XB 150

88D 76-V02 B XB 100 VGD 76-V02 B XB 100

88D 46-V02 B XB 100 88D 46-V02 B XB 100

Non-fei

n µm Ra > 0.4 0.2 < 0.2

Recommended specifications - cylindrical grinding -

Hardened steel

Cylindrical grinding			
	Surface finish in µm Ra	Resin bond	Vitrified bond
	> 0.4	N2B 64-R10 B XA 75	N1B 64-N42 V YA2 150
	0.2 - 0.4	N2B 54-R10 B XA 50	N1B 54-N42 V YA2 100
	< 0.2	N2B 46-R09 B XA 50	N1B 46-M44 V YA2 75

ATLANTIC

GRINDING WHEELS + HONING STONES

Soft steel

Tool steel

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	42B 64-N11 B XA 75	50B 64-044 V YA2 200
0.2 - 0.4	42B 54-N11 B XA 50	50B 54-044 V YA2 150
< 0.2	42B 46-N11 B XA 50	50B 46-N46 V YA2 100

Super-refined alloyed steel

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 64-R10 B XA 75	N1B 64-N42 V YA2 150
0.2 - 0.4	N2B 54-R10 B XA 50	N1B 54-N42 V YA2 100
< 0.2	N2B 46-R09 B XA 50	N1B 46-M44 V YA2 75

Surface finish in µm Ra Resin bond Vitrified bond > 0.4 42B 64-R05 B XA 75 40B 64-P50 V YA2 125 0.2 - 0.4 42B 54-R05 B XA 50 40B 54-P50 V YA2 100 < 0.2 42B 46-V03 B XA 50 40B 46-Q50 V YA2 100

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 64-R10 B XA 75	N1B 64-N42 V YA2 150
0.2 - 0.4	N2B 54-R10 B XA 50	N1B 54-N42 V YA2 100
< 0.2	N2B 46-R09 B XA 50	N1B 46-M44 V YA2 75

High alloyed steel

Surface finish in µm Ra	Resin bond Vitrified bond	
> 0.4	N2B 64-R05 B XA 75	N1B 64-P50 V YA2 200
0.2 - 0.4	N2B 54-R05 B XA 50	N1B 54-P50 V YA2 150
< 0.2	N2B 46-V03 B XA 50	N1B 46-Q50 V YA2 100

Tungsten carbide / ceramics

Surface finish in µm Ra	Tungsten carbide Ceramic / glass	
> 0.4	88D 64-V00 B XB 150	VGD 64-V00 B XB 150
0.2 - 0.4	88D 54-V00 B XB 150	VGD 54-V00 B XB 150
< 0.2	88D 46-V02 B XB 100	VGD 46-V02 B XB 100

Recommended specifications - surface grinding -

Hardened steel

Surface grinding (only shape available 1A1 or similar)

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 151-N11 B XA 75	N1B 151-N42 V YA1 125
0.2 - 0.4	N2B 126-N11 B XA 75	N1B 126-N42 V YA1 125
< 0.2	N2B 91-N12 B XA 50	N1B 91-M40 V YA2 100
≤ 0.1	N2B 46-N12 B XC 50	N1B 46-M40 V YA2 100

Soft steel

Tool steel

High alloyed steel

Non-ferrous metals

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	42B 151-R10 B XA 75	50B 151-P50 V YA1 150
0.2 - 0.4	42B 126-R10 B XA 75	50B 126-P50 V YA1 125
< 0.2	42B 91-R08 B XA 50	50B 91-Q50 V YA2 100

Super-refined alloyed steel

in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 151-N11 B XA 75	N1B 151-N42 V YA1 125
0.2 - 0.4	N2B 126-N11 B XA 75	N1B 126-N42 V YA1 125
< 0.2	N2B 91-N12 B XA 50	N1B 91-M40 V YA2 100
≤ 0.1	N2B 46-N12 B XC 50	N1B 46-M40 V YA2 100

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	52B 252-N12 B XA 50	40B 252-N42 V YA1 75
0.2 - 0.4	52B 151-N12 B XA 50	40B 151-N42 V YA1 75
< 0.2	52B 126-R10 B XA 50	40B 126-M40 V YA1 50
≤ 0.1	52B 76-R10 B XA 50	40B 76-M40 V YA2 50

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 151-N11 B XA 75	N1B 151-N42 V YA1 125
0.2 - 0.4	N2B 126-N11 B XA 75	N1B 126-N42 V YA1 125
< 0.2	N2B 91-N12 B XA 50	N1B 91-M40 V YA2 100
≤ 0.1	N2B 46-N12 B XC 50	N1B 46-M40 V YA2 100

Surface finish in µm Ra	Resin bond	Vitrified bond
> 0.4	N2B 126-R10 B XA 75	N1B 126-N42 V YA1 150
0.2 - 0.4	N2B 107-R10 B XA 50	N1B 107-N42 V YA1 150
< 0.2	N2B 76-R08 B XA 50	N1B 76-M40 V YA2 100

Tungsten carbide / ceramics

Surface finish in µm Ra	Tungsten carbide	Ceramic / glass
> 0.4	88D 252-R08 B XC 150	VGD 181-R07 B XC 150
0.2 - 0.4	88D 151-R08 B XC 150	VGD 151-R07 B XC 150
< 0.2	88D 126-R10 B XC 100	VGD 126-R08 B XC 100
≤ 0.1	88D 76-R10 B XC 100	

Coolant Cutting and traverse speed

		The functions of coolant
Cooling	₽	to conduct heat away from the ground component
Lubricant	₽	minimizing the friction between grit and workpiece
Cleansing	₽	the removal of swarf and abrasive waste from the contact zone

Required properties of a coolant

A coolant should have the following properties:

- ➡ to act as a corrosion inhibitor
- ➡ does not foam
- ⇒ remains stable for long periods
- ➡ no health hazard
- ➡ good wetting ability

Types of coolant

Mineral oil

Guarantees maximum lubrication, thus reducing pressure. Grain wear and heat generation are reduced which means an increase in tool life **(up to a factor of 10)** with less damage to the contact area.

Soluble oil

Soluble oils are generally based on water soluble concentrates of mineral oil. This gives a compromise between lubrication and the ability to cool. The higher the percentage of concentrate mixed with the water, the better the lubrication property. Normal concentration levels are 3-8 %.

Synthetic solutions

Synthetic solutions give maximum coolant effect like water, but give a minimum lubrication effect.

Cutting speed

CBN wheels

CBN wheels are particularly suited to high speed grinding. **ATLANTIC** CBN wheels are currently rated for a maximum cutting speed of 125 m/s. Generally speaking, an increase in the peripheral speed enhances the G factor and the Q factor (volume of stock removed in a given time); this of course depends on machine capability and coolant / lubrication equipment. Dry grinding requires lower cutting speeds; this ranges from 20-30 m/s depending on the type of bonding used.

Diamond wheels

The grinding proceess produces high temperatures which in turn have a detrimental effect on the diamond grain particles; Atlantik GmbH therefore recommend a cutting speed of maximum 50 m/s. For customers requiring higher production rates (e.g. greater Q factor) higher cutting speeds are required. However, the heat generated must be reduced through either an optimised coolant system (very complex) or by using a coated diamond grain which is capable of heat dissipation (e.g. **ATLANTIC** GDD grain type).

Traverse speed(V_{fa})

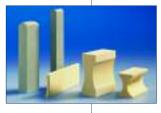
Grinding application	Traverse speed in m/min
• InternaL	0.5 - 2 m/min
Cylindrical	~ 1/3 of layer width per workpiece revolution
 Surface (cup wheel) 	2 - 5 m/min
 Surface (shape 1A1) 	5 - 20 m/min

Atlantik GmbH

Gartenstrasse 7-17 D-53229 Bonn / Germany Tel. + 49 (228) 408-0 Fax + 49 (228) 408-290 e-mail: info@atlantic-bonn.de www.atlantic-bonn.de

creative & dynamic

Product range – Grinding wheels – Honing stones


The required results can be achieved by the use of optimally selected abrasive media and individually tailored specifications from the **ATLANTIC** product range.

We manufacture:

- Grinding wheels and segments
- Honing and superfinishing stones
- From 2 to 1 250 mm diameter
- In aluminium oxide and silicon carbide
- In diamond and CBN
- In vitrified and resin bond
- Up to grit size 2000 and superfine qualities to achieve the finest surface finish

in all common sizes and profiles – special profiles are manufactured to drawing at customer's request.

Surface grinding
Profile surface grinding
Cylindrical grinding
Internal grinding
Centerless grinding
Bar grinding
Roll grinding
Thread grinding
Gear tooth grinding
Crankshaft grinding
Cam grinding
Ball grinding
Tool grinding
Track grinding
Hypodermic needle grinding

CBN 5000/1.07 GB We reserve the right of technical alteration